Resolution-Based Certificate Extraction for QBF (Tool Presentation)

Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria
http://fmv.jku.at/

SAT'12
June 17-20, 2012
Trento, Italy

Motivation
Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y .(x \vee y) \wedge(\neg x \vee \neg y)$

Motivation

Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y \cdot(x \vee y) \wedge(\neg x \vee \neg y)$

Truth Table

x	y	ψ
0	0	0
0	1	1
1	0	1
1	1	0

Motivation

Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y .(x \vee y) \wedge(\neg x \vee \neg y)$

Q-Resolution Proof

Motivation

Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y \cdot(x \vee y) \wedge(\neg x \vee \neg y)$

Q-Resolution Proof

Motivation

Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y \cdot(x \vee y) \wedge(\neg x \vee \neg y)$

Q-Resolution Proof

Motivation

Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y \cdot(x \vee y) \wedge(\neg x \vee \neg y)$
Truth Table

x	y	ψ
0	0	0
0	1	1
1	0	1
1	1	0

Q-Resolution Proof

$\longrightarrow y=x \Rightarrow \psi=0$

Motivation

Example XOR

Exclusive OR (XOR): QBF $\psi=\exists x \forall y \cdot(x \vee y) \wedge(\neg x \vee \neg y)$
Truth Table

x	y	ψ
0	0	0
0	1	1
1	0	1
1	1	0

Q-Resolution Proof

$\longrightarrow y=x \Rightarrow \psi=0$
$\longrightarrow \quad f_{y}(x)=x \quad$ (counter model)

Motivation

contd.

Our Goal

- verify correctness of a QBF solver's result
- concrete solutions (certificates), e.g. counter examples, strategies \longrightarrow Skolem/Herbrand function-based certificates

Motivation

contd.

Our Goal

- verify correctness of a QBF solver's result
- concrete solutions (certificates), e.g. counter examples, strategies \longrightarrow Skolem/Herbrand function-based certificates

QBF Certificates

- as set of Skolem/Herbrand functions (e.g. $f_{y}(x)=x$ in prev. example)
- representation of model/counter model
- novel approach presented at CAV'11 [BJ11] for true and false QBF \longrightarrow extraction of Skolem/Herbrand functions from Q-resolution proofs

Motivation

contd.

Our Goal

- verify correctness of a QBF solver's result
- concrete solutions (certificates), e.g. counter examples, strategies \longrightarrow Skolem/Herbrand function-based certificates

QBF Certificates

- as set of Skolem/Herbrand functions (e.g. $f_{y}(x)=x$ in prev. example)
- representation of model/counter model
- novel approach presented at CAV'11 [BJ11] for true and false QBF \longrightarrow extraction of Skolem/Herbrand functions from Q-resolution proofs

Our Work

- solver-independent framework for
- resolution-based certificate extraction and validation
- for true and false QBF

Certificaton Workflow

Overview

Certificaton Workflow

Overview

Certificaton Workflow

Overview

Certificaton Workflow

Overview

Certificaton Workflow

Overview

PicoSAT

Certification by Example Q-Resolution Proof

Input Formula

$$
\begin{aligned}
& \exists x_{1} \forall y_{1} \exists x_{2} x_{3} \forall y_{2} \exists x_{4} x_{5} .\left(\neg x_{1} \vee \neg x_{5}\right) \wedge\left(y_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge \\
&\left(x_{3} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{2}\right) \wedge\left(x_{1} \vee x_{4}\right)
\end{aligned}
$$

Certification by Example Q-Resolution Proof

Input Formula

$$
\begin{array}{r}
\exists x_{1} \forall y_{1} \exists x_{2} x_{3} \forall y_{2} \exists x_{4} x_{5} \cdot\left(\neg x_{1} \vee \neg x_{5}\right) \wedge\left(y_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge \\
\left(x_{3} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{2}\right) \wedge\left(x_{1} \vee x_{4}\right)
\end{array}
$$

Q-Resolution Proof DAG

Certification by Example Q-Resolution Proof

Input Formula

$$
\begin{aligned}
& \exists x_{1} \forall y_{1} \exists x_{2} x_{3} \forall y_{2} \exists x_{4} x_{5} .\left(\neg x_{1} \vee \neg x_{5}\right) \wedge\left(y_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge \\
&\left(x_{3} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{2}\right) \wedge\left(x_{1} \vee x_{4}\right)
\end{aligned}
$$

Q-Resolution Proof DAG

Certification by Example Q-Resolution Proof

Input Formula

$$
\begin{aligned}
& \exists x_{1} \forall y_{1} \exists x_{2} x_{3} \forall y_{2} \exists x_{4} x_{5} .\left(\neg x_{1} \vee \neg x_{5}\right) \wedge\left(y_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge \\
&\left(x_{3} \vee \neg y_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{2}\right) \wedge\left(x_{1} \vee x_{4}\right)
\end{aligned}
$$

Q-Resolution Proof DAG

Extracted Herbrand Functions

$\left.\begin{array}{l}f_{y_{1}}\left(x_{1}\right)=\neg x_{1} \\ f_{y_{2}}\left(x_{2}, x_{3}\right)=\neg x_{2} \vee \neg x_{3}\end{array}\right\}$ Certificate

Certification by Example

Extracted Certificate: AIG Representation

$$
f_{y_{1}}\left(x_{1}\right)=\neg x_{1}
$$

$$
\begin{aligned}
f_{y_{2}}\left(x_{2}, x_{3}\right) & =\neg x_{2} \vee \neg x_{3} \\
& =\neg\left(x_{2} \wedge x_{3}\right)
\end{aligned}
$$

Certification by Example

Herbrandization

Experimental Results

Benchmarks: QBFEVAL'10 set (568 formulas)
Limits: $\quad 1800$ seconds and 7 GB limits

(1) Proof Extraction, Checking

- out of 362 solved instances, 348 proofs extracted and checked by QRPcheck
- 14 instances lost due to memory out

Experimental Results

Benchmarks: QBFEVAL'10 set (568 formulas)
Limits: $\quad 1800$ seconds and 7 GB limits
(1) Proof Extraction, Checking

- out of 362 solved instances, 348 proofs extracted and checked by QRPcheck
- 14 instances lost due to memory out
(2) Certificate Extraction
- out of 348 proofs, 337 certificates extracted
- 11 instances lost due to memory out
- AND-Gates: max. 147 Mill., avg. 8 Mill., med. 369

Experimental Results

Benchmarks: QBFEVAL'10 set (568 formulas)
Limits: $\quad 1800$ seconds and 7 GB limits
(1) Proof Extraction, Checking

- out of 362 solved instances, 348 proofs extracted and checked by QRPcheck
- 14 instances lost due to memory out
(2) Certificate Extraction
- out of 348 proofs, 337 certificates extracted
- 11 instances lost due to memory out
- AND-Gates: max. 147 Mill., avg. 8 Mill., med. 369
(3) Skolemization/Herbrandization
- out of 337 certificates, 337 formulas skolemized/herbrandized
- Clauses: max. 441 Mill., avg. 25 Mill., med. 71000

Experimental Results

Benchmarks: QBFEVAL'10 set (568 formulas)
Limits: $\quad 1800$ seconds and 7 GB limits
(1) Proof Extraction, Checking

- out of 362 solved instances, 348 proofs extracted and checked by QRPcheck
- 14 instances lost due to memory out
(2) Certificate Extraction
- out of 348 proofs, 337 certificates extracted
- 11 instances lost due to memory out
- AND-Gates: max. 147 Mill., avg. 8 Mill., med. 369
(3) Skolemization/Herbrandization
- out of 337 certificates, 337 formulas skolemized/herbrandized
- Clauses: max. 441 Mill., avg. 25 Mill., med. 71000
(4) Certificate Validation
- out of 337 skolemized/herbrandized formulas, 275 checked successfully
- 45 (17) certificates not validated due to memory (time) out
\rightarrow out of these 62, 57 instances were satisfiable
- $>70 \%$ of the total runtime

Conclusion

Summary

- complete and solver-independent framework
- certification and validation of true and false QBF
- certificates for over 90% of solved instances extracted
$\rightarrow 100 \%$ if memory limit is lifted
- over 80% of all extracted certificates validated
- certificate validation is still challenging

Future Work

- optimize certificate validation process
\rightarrow employ incremental SAT-checking
- support for advanced dependency schemes (key feature of DepQBF)

References

围
Valeriy Balabanov and Jie-Hong R. Jiang. Resolution Proofs and Skolem Functions in QBF Evaluation and Applications.
In Proc. of the 23rd International Conference on Computer Aided Verification (CAV 2011), volume 6806 of Lecture Notes in Computer Science, pages 149-164. Springer, 2011.

Runtime Overview

	Instances				Total Time [s]			
	sv	ch	ex	va	DepQBF	QRPcheck	QRPcert	PicoSAT
sat	157	153	143	86	701.8	80.1	30.9	3247.0
unsat	205	195	194	189	4241.9	1011.5	86.8	1090.0
total	$\mathbf{3 6 2}$	$\mathbf{3 4 8}$	$\mathbf{3 3 7}$	$\mathbf{2 7 5}$	$\mathbf{4 9 4 3 . 7}$	$\mathbf{1 0 9 1 . 7}$	$\mathbf{1 1 7 . 6}$	$\mathbf{4 3 3 7 . 0}$

Comparison of Proof, Certificate, Prop. Formula Sizes

	Proof				Certificate			Prop. Formula		
	vertices		literals		AND-Gates		variables		clauses	
	avg	med								
	308 k	1 k	117 M	626 k	20 M	24 k	20 M	62 k	59 M	183 k
unsat	135 k	2 k	14 M	146 k	170 k	193	336 k	23 k	846 k	55 k
total	211 k	2 k	$\mathbf{6 0 M}$	$\mathbf{1 7 5 k}$	$\mathbf{8 M}$	$\mathbf{3 6 9}$	$\mathbf{8 M}$	$\mathbf{2 8 k}$	$\mathbf{2 5 M}$	$\mathbf{7 1 k}$

Certificate Statistics

	In	Out	AND-Gates			AND-Gates (shared) [\%]		
	avg.	avg.	max.	avg.	med.	max.	avg.	med.
sat	125	$3 k$	147 M	20 M	24 k	98.1	65.2	66.8
unsat	20 k	95	10 M	170 k	193	49.5	23.0	23.7
total	12k	1k	147M	$\mathbf{8 M}$	$\mathbf{3 6 9}$	$\mathbf{9 8 . 1}$	$\mathbf{4 0 . 9}$	$\mathbf{4 6 . 6}$

