Part 2: Gödel’s Proof of the Existence of God

Stanford University
ai.stanford.edu/~epacuit/lmh

Winter, 2009
Review: Intensional vs. Extensional Objects

Extensional Object: a set or relation in the usual sense

Intensional Object: (or concept), the “meaning” depends on the context (i.e., possible world), a function from possible worlds to extensional objects.
Review: Intensional vs. Extensional Objects

Extensional Object: a set or relation in the usual sense

Intensional Object: (or *concept*), the “meaning” depends on the context (i.e., possible world), a function from possible worlds to extensional objects.

Example:

- Possible worlds are people, the domain as real-world objects
- Each person will classify some of those objects as being *red* (type $\langle 0 \rangle$).
- The *red concept* maps to each person the set of objects he/she considers red (type $\uparrow \langle 0 \rangle$).
- The *color concept* maps to each person the set of *color* (concepts) for that person (type $\uparrow \uparrow \langle 0 \rangle$).
Someday everybody will be tall

Many ambiguities!
Someday everybody will be tall

Many ambiguities!

Let $T(x)$ be a (non-fuzzy) predicate saying "x is tall", assume worlds are points in time ($\Diamond \varphi$ means "φ will be true"), assume actualist reading for now:
Someday everybody will be tall

Many ambiguities!

Let $T(x)$ be a (non-fuzzy) predicate saying “x is tall”, assume worlds are points in time ($\Diamond \varphi$ means “φ will be true”), assume actualist reading for now:

1. $\forall x \Diamond T(x)$
Someday everybody will be tall

Many ambiguities!

Let $T(x)$ be a (non-fuzzy) predicate saying “x is tall”, assume worlds are points in time ($\Diamond \varphi$ means “φ will be true”), assume actualist reading for now:

1. $\forall x \Diamond T(x)$
2. $\Diamond \forall x T(x)$
Someday everybody will be tall

Many ambiguities!

Let $T(x)$ be a (non-fuzzy) predicate saying “x is tall”, assume worlds are points in time ($\Diamond \varphi$ means “φ will be true”), assume actualist reading for now:

1. $\forall x \Diamond T(x)$
2. $\Diamond \forall x T(x)$
3. But do we mean, “tall” as we currently use the word tall, or as the word is used in the future?
(x: type 0, P: type ↑⟨0⟩, X: type ↑⟨0⟩)

⟨λX.◊(∃x)X(x)⟩(P) ↔ ◊⟨λX.(∃x)X(x)⟩(P) is valid

ℳ, Γ |= ν ⟨λX.◊(∃x)X(x)⟩(P)
(x: type 0, P: type ↑⟨0⟩, X: type ↑⟨0⟩)

$\langle \lambda X. \Diamond (\exists x)X(x) \rangle (P) \leftrightarrow \Diamond \langle \lambda X.(\exists x)X(x) \rangle (P)$ is valid

$\mathcal{M}, \Gamma \models_{v} \langle \lambda X. \Diamond (\exists x)X(x) \rangle (P)$

if $\mathcal{M}, \Gamma \models_{v} \Diamond (\exists x)X(x)[X/O]$ (where $O = \mathcal{I}(P, \Gamma)$)
(x: type 0, P: type ↑⟨0⟩, X: type ↑⟨0⟩)

⟨λX.◊(∃x)X(x)⟩(P) ↔ ◊⟨λX.(∃x)X(x)⟩(P) is valid

\[M, \Gamma \models_v ⟨λX.◊(∃x)X(x)⟩(P)\]
iiff \[M, \Gamma \models_v ◊(∃x)X(x)[X/O]\] (where \(O = I(P, \Gamma)\))

iff there is a \(\Delta\) with \(\Gamma R \Delta\) and \(M, \Delta \models_v (∃x)P(x)\) (usual definition, \(P\) constant symbol)
(x: type 0, P: type ↑⟨0⟩, X: type ↑⟨0⟩)
⟨λX.◊(∃x)X(x)⟩(P) ↔ ◊⟨λX.(∃x)X(x)⟩(P) is valid

\(\mathcal{M}, \Gamma \models_P ⟨λX.◊(∃x)X(x)⟩(P)\)
iff \(\mathcal{M}, \Gamma \models_P ◊(∃x)X(x)[X/O]\) (where \(O = \mathcal{I}(P, \Gamma)\))

iff there is a \(\Delta\) with \(\Gamma R \Delta\) and \(\mathcal{M}, \Delta \models_P (∃x)P(x)\) (usual definition, \(P\) constant symbol)

iff \(\Gamma R \Delta\) and there is a \(a \in D\) such that \(a \in \mathcal{I}(P)(\Delta)\)
(x: type 0, P: type ↑⟨0⟩, X: type ↑⟨0⟩)

⟨λX.◊(∃x)X(x)⟩(P) ↔ ◊⟨λX.(∃x)X(x)⟩(P) is valid

\[\mathcal{M}, \Gamma \models_v \langle \lambda X.\diamond(\exists x)X(x)\rangle(P) \]

iff \[\mathcal{M}, \Gamma \models_v \diamond(\exists x)X(x)[X/O] \] (where \(O = \mathcal{I}(P, \Gamma) \))

iff there is a \(\Delta \) with \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v (\exists x)P(x) \) (usual definition, \(P \) constant symbol)

iff \(\Gamma R \Delta \) and there is a \(a \in D \) such that \(a \in \mathcal{I}(P)(\Delta) \)

iff \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v \exists xP(x) \)
\((x: \text{ type } 0, P: \text{ type } \uparrow\langle 0 \rangle, X: \text{ type } \uparrow\langle 0 \rangle) \)

\[\langle \lambda X. \Diamond (\exists x)X(x) \rangle (P) \leftrightarrow \Diamond \langle \lambda X.(\exists x)X(x) \rangle (P) \text{ is valid} \]

\(\mathcal{M}, \Gamma \models_v \langle \lambda X.\Diamond (\exists x)X(x) \rangle (P) \)

iff \(\mathcal{M}, \Gamma \models_v \Diamond (\exists x)X(x)[X/O] \) (where \(O = I(P, \Gamma) \))

iff there is a \(\Delta \) with \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v (\exists x)P(x) \) (usual definition, \(P \) constant symbol)

iff \(\Gamma R \Delta \) and there is a \(a \in D \) such that \(a \in I(P)(\Delta) \)

iff \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v \exists xP(x) \)

iff \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v \langle \lambda X.(\exists x)X(x) \rangle (P) \)
(x: type 0, \(P \): type \(\uparrow \langle 0 \rangle \), \(X \): type \(\uparrow \langle 0 \rangle \))

\[\langle \lambda X. \Diamond (\exists x)X(x) \rangle (P) \leftrightarrow \Diamond \langle \lambda X.(\exists x)X(x) \rangle (P) \text{ is valid} \]

\[\mathcal{M}, \Gamma \models_v \langle \lambda X. \Diamond (\exists x)X(x) \rangle (P) \]

iff \(\mathcal{M}, \Gamma \models_v \Diamond (\exists x)X(x)[X/O] \) (where \(O = \mathcal{I}(P, \Gamma) \))

iff there is a \(\Delta \) with \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v (\exists x)P(x) \) (usual definition, \(P \) constant symbol)

iff \(\Gamma R \Delta \) and there is a \(a \in D \) such that \(a \in \mathcal{I}(P)(\Delta) \)

iff \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v \exists xP(x) \)

iff \(\Gamma R \Delta \) and \(\mathcal{M}, \Delta \models_v \langle \lambda X.(\exists x)X(x) \rangle (P) \)

iff \(\mathcal{M}, \Gamma \models_v \Diamond \langle \lambda X.(\exists x)X(x) \rangle (P) \)
(x: type 0, P: type \uparrow\langle0\rangle, X: type \uparrow\langle0\rangle)

\langle \lambda X.\Diamond (\exists x)X(x) \rangle(\downarrow P) \rightarrow \Diamond \langle \lambda X.(\exists x)X(x) \rangle(\downarrow P) \text{ is not valid}
\[(x: \text{ type } 0, P: \text{ type } \uparrow\langle 0 \rangle, X: \text{ type } \uparrow\langle 0 \rangle)\]

\[\langle \lambda X. \Diamond (\exists x)X(x) \rangle (\downarrow P) \rightarrow \Diamond \langle \lambda X. (\exists x)X(x) \rangle (\downarrow P) \text{ is not valid}\]

\[\Gamma \begin{array}{c} a \\ \hline \end{array} \quad I(P, \Gamma) = \{a\}\]

\[\Delta \begin{array}{c} a \\ \hline \end{array} \quad I(P, \Delta) = \emptyset\]

\[M, \Gamma \models_v \langle \lambda X. \Diamond (\exists x)X(x) \rangle (\downarrow P)\]
(x: type 0, P: type ↑⟨0⟩, X: type ↑⟨0⟩)

⟨λX.◊(∃x)X(x)⟩(↓P) → ◊⟨λX.(∃x)X(x)⟩(↓P) is not valid

Γ ❍ a ✷ I(P, Γ) = {a}

Δ ❍ a ✷ I(P, Δ) = ∅

M, Γ ⊨v ⟨λX.◊(∃x)X(x)⟩(↓P)
\[(x: \text{ type } 0, \ P: \text{ type } \uparrow\langle 0 \rangle, \ X: \text{ type } \uparrow\langle 0 \rangle)\]

\[\langle \lambda X. \diamond(\exists x)X(x) \rangle(\downarrow P) \rightarrow \diamond \langle \lambda X. (\exists x)X(x) \rangle(\downarrow P) \text{ is not valid}\]

\[\Gamma \begin{array}{c}
\Box \ a \\
\hline
\end{array} \quad \mathcal{I}(P, \Gamma) = \{a\}\]

\[\Delta \begin{array}{c}
\Box \ a \\
\hline
\end{array} \quad \mathcal{I}(P, \Delta) = \emptyset\]

\[\mathcal{M}, \Gamma \models_{v} \langle \lambda X. \diamond(\exists x)X(x) \rangle(\downarrow P)\]

iff \[\mathcal{M}, \Gamma \models_{v} \diamond \exists xX(x)[X/\{a\}]\]
(x: type 0, P: type \uparrow\langle0\rangle, X: type \uparrow\langle0\rangle)

\langle\lambda X.\Diamond(\exists x)X(x)\rangle(\downarrow P) \rightarrow \Diamond\langle\lambda X.(\exists x)X(x)\rangle(\downarrow P) is not valid

\[\Gamma \overset{a}{\rightarrow} ~ \mathcal{I}(P, \Gamma) = \{a\} \]

\[\Delta \overset{a}{\rightarrow} ~ \mathcal{I}(P, \Delta) = \emptyset \]

\[\mathcal{M}, \Gamma \models \Diamond\langle\lambda X.(\exists x)X(x)\rangle(\downarrow P) \]
(x: type \(0\), \(P\): type \(\uparrow\{0\}\), \(X\): type \(\uparrow\{0\}\))

\[\langle \lambda X.\Diamond(\exists x)X(x) \rangle(\downarrow P) \rightarrow \Diamond\langle \lambda X.\exists x)X(x) \rangle(\downarrow P) \text{ is not valid}\]

\[\Gamma \vdash a \quad \mathcal{I}(P, \Gamma) = \{a\}\]

\[\Delta \vdash a \quad \mathcal{I}(P, \Delta) = \emptyset\]

\[\mathcal{M}, \Gamma \models_{v} \Diamond\langle \lambda X.(\exists x)X(x) \rangle(\downarrow P)\]

iff \(\Gamma \triangleright \Delta\) and \(\mathcal{M}, \Delta \models_{v} \exists xX(x)(\downarrow P)\)

iff \(\Gamma \triangleright \Delta\) and \(\mathcal{M}, \Delta \models_{v} \exists xX(x)[X/\emptyset]\)
\[(x: \text{type } 0, P: \text{type } \uparrow\langle 0 \rangle, X: \text{type } \uparrow\langle 0 \rangle)\]

\[\langle \lambda X. \diamond (\exists x) X(x) \rangle (\downarrow P) \rightarrow \diamond \langle \lambda X. (\exists x) X(x) \rangle (\downarrow P) \text{ is not valid}\]

\[\Gamma \quad \text{□} \quad I(P, \Gamma) = \{a\}\]

\[\Delta \quad \text{□} \quad I(P, \Delta) = \emptyset\]

\[M, \Gamma \not\vdash_v \diamond \langle \lambda X. (\exists x) X(x) \rangle (\downarrow P)\]

iff \(\Gamma R \Delta \text{ and } M, \Delta \not\vdash_v \exists x X(x) (\downarrow P)\)

iff \(\Gamma R \Delta \text{ and } M, \Delta \not\vdash_v \exists x X(x)[X/\emptyset]\)
Tableaus
Possibly God exists

Informal Axiom 1: Exactly one of a property or its complement is positive
Possibly God exists

Informal Axiom 1: Exactly one of a property or its complement is positive

Definition: P entails Q if, necessarily, everything having P also has Q.

Possibly God exists

Informal Axiom 1: Exactly one of a property or its complement is positive

Definition: P entails Q if, necessarily, everything having P also has Q.

Informal Axiom 2: Any property entailed by a positive property is positive
Possibly God exists

Informal Axiom 1: Exactly one of a property or its complement is positive.

Definition: P entails Q if, necessarily, everything having P also has Q.

Informal Axiom 2: Any property entailed by a positive property is positive.

Informal Proposition 1: Any positive property is possibly instantiated. I.e., if P is positive then it is possible that something has property P.
Possibly God exists

Informal Axiom 3: The conjunction of any collection of positive properties is positive.
Possibly God exists

Informal Axiom 3: The conjunction of any collection of positive properties is positive.

Informal Definition: A God is any being that has every positive property.
Possibly God exists

Informal Axiom 3: The conjunction of any collection of positive properties is positive.

Informal Definition: A God is any being that has every positive property

Informal Proposition 2: It is possible that God exists.
Possibly God exists

Informal Axiom 3: The conjunction of any collection of positive properties is positive.

Informal Definition: A God is any being that has every positive property

Informal Proposition 2: It is possible that God exists.
God’s existence is necessary, if possible

Definition A property G is the **essence** of an object g if:

1. g has property G
2. G entails every property of g
God’s existence is necessary, if possible

Definition A property G is the **essence** of an object g if:

1. g has property G
2. G entails every property of g

Informal Proposition: If g is a God, the essence of g is being a God.
God’s existence is necessary, if possible

Definition An object \(g \) has the property of **necessary existing** if the essence of \(g \) is necessarily instantiated.
God’s existence is necessary, if possible

Definition An object g has the property of *necessary existing* if the essence of g is necessarily instantiated.

Informal Axiom 5: Necessary existence, itself, is a positive property.
God’s existence is necessary, if possible

Definition An object g has the property of **necessary existing** if the essence of g is necessarily instantiated.

Informal Axiom 5: Necessary existence, itself, is a positive property.

Informal Proposition If a God exists, a God exists necessarily.
God’s existence is necessary, if possible

Definition An object \(g \) has the property of **necessary existing** if the essence of \(g \) is necessarily instantiated.

Informal Axiom 5: Necessary existence, itself, is a positive property.

Informal Proposition If a God exists, a God exists necessarily.

Informal Proposition If it is possible that a God exists, it is necessary that a God exists (assume S5)
Informal Theorem Assuming all the axioms, and assuming that the underlying logic is **S5**, a (the) God necessarily exists.
Formalizing Proposition 1

Definition: Let \(P \) represent *positiveness*. \(P \) is a constant symbol of type \(\uparrow \langle \uparrow 0 \rangle \). \(P \) is positive if we have \(P(P) \).

Definition If \(\tau \) is a term of type \(\uparrow \langle 0 \rangle \), take \(\neg \tau \) as short for \(\langle \lambda x. \neg \tau(x) \rangle \). Call \(\tau \) negative if \(\neg \tau \) is positive.
Formalizing Proposition 1

Definition: Let \mathcal{P} represent **positiveness**. \mathcal{P} is a constant symbol of type $\uparrow\langle\uparrow 0\rangle$. \mathcal{P} is positive if we have $\mathcal{P}(\mathcal{P})$.

Definition If τ is a term of type $\uparrow\langle 0\rangle$, take $\neg\tau$ as short for $\langle \lambda x. \neg\tau(x) \rangle$. Call τ negative if $\neg\tau$ is positive.

Formalizing Axiom 1 (Axiom 11.3)

1. $\forall X[\mathcal{P}(\neg X) \rightarrow \neg\mathcal{P}(X)]$
2. $\forall X[\neg\mathcal{P}(X) \rightarrow P(X)]$
Formalizing Proposition 1

Formalizing Axiom 2 (Axiom 11.5)

\[(\forall X)(\forall Y)[\mathcal{P}(X) \land \Box(\forall^E x)(X(x) \rightarrow Y(x))] \rightarrow \mathcal{P}(Y)]\]
Formalizing Proposition 1

Formalizing Axiom 2 (Axiom 11.5)

$$\forall X \forall Y [P(X) \land \Box (\forall^E x) (X(x) \rightarrow Y(x))] \rightarrow P(Y)$$

Proposition Assuming 11.5
1. $$\exists X P(X) \rightarrow P(\langle \lambda x. x = x \rangle)$$
2. $$\exists X P(X) \rightarrow P(\neg \langle x. \neg x = x \rangle)$$
Formalizing Proposition 1

Formalizing Axiom 2 (Axiom 11.5)

$$(\forall X)(\forall Y)[[P(X) \land \Box(\forall^E x)(X(x) \rightarrow Y(x))]] \rightarrow P(Y)]$$

Proposition Assuming 11.5
1. $$(\exists X)P(X) \rightarrow P(\langle \lambda x. x = x \rangle)$$
2. $$(\exists X)P(X) \rightarrow P(\neg \langle x. \neg x = x \rangle)$$

Proposition Assuming 11.3 A and 11.5
$$(\exists X)P(X) \rightarrow \neg P(\langle \lambda x. \neg x = x \rangle)$$
Formalizing Proposition 1

Formalizing Axiom 2 (Axiom 11.5)

\[(\forall X)(\forall Y)[[P(X) \land \Box(\forall^E x)(X(x) \rightarrow Y(x))] \rightarrow P(Y)]\]

Proposition Assuming 11.5

1. \((\exists X)P(X) \rightarrow P(\langle \lambda x.x = x \rangle)\)
2. \((\exists X)P(X) \rightarrow P(\neg\langle x.\neg x = x \rangle)\)

Proposition Assuming 11.3 A and 11.5

\((\exists X)P(X) \rightarrow \neg P(\langle \lambda x.\neg x = x \rangle)\)

Formalizing Informal Proposition 1 Assuming 11.3 A and 11.5

\[(\forall X)[P(X) \rightarrow \Diamond(\exists^E x)X(x)]\]
Formalizing Informal Axiom 3

Axiom 11.9: \((\forall X)(\forall Y)[\mathcal{P}(X) \land \mathcal{P}(Y)] \rightarrow \mathcal{P}(X \land Y)]\)
Formalizing Informal Axiom 3

Axiom 11.9: \((\forall X)(\forall Y)[[P(X) \land P(Y)] \rightarrow P(X \land Y)]\)

But this should hold for any number of Xs
Axiom 11.9: \((\forall X)(\forall Y)[[P(X) \land P(Y)] \rightarrow P(X \land Y)]\)

But this should hold for any number of \(X\)s

1. \(\mathcal{Z}\) applies to only positive properties:

\[
pos(\mathcal{Z}) := (\forall X)[\mathcal{Z}(X) \rightarrow P(X)]
\]

2. \(X\) is the (necessary) intersection of \(\mathcal{Z}\)

\[
(X \text{ intersection of } \mathcal{Z}) := \Box(\forall x)[X(x) \leftrightarrow (\forall Y)[\mathcal{Z}(Y) \rightarrow Y(x)]]
\]
Formalizing Informal Axiom 3

Axiom 11.9: \((\forall X)(\forall Y)[[P(X) \land P(Y)] \rightarrow P(X \land Y)]\)
But this should hold for any number of Xs

1. \(Z\) applies to only positive properties:

\[
p \text{pos}(Z) := (\forall X)[Z(X) \rightarrow P(X)]
\]

2. \(X\) is the (necessary) intersection of \(Z\)

\[
(X \text{ intersection of } Z) := \square(\forall x)[X(x) \leftrightarrow (\forall Y)[Z(Y) \rightarrow Y(x)]]
\]

Axiom 11.10:

\((\forall Z)[\text{pos}(Z) \rightarrow \forall X[(X \text{ intersection of } Z) \rightarrow P(X)]]\)
Technical Assumptions (Axiom 4)

\[(\forall X)[\mathcal{P}(X) \rightarrow \Box \mathcal{P}(X)]\]

\[(\forall X)[\neg \mathcal{P}(X) \rightarrow \Box \neg \mathcal{P}(X)]\]
Technical Assumptions (Axiom 4)

\[(\forall X)[P(X) \rightarrow \Box P(X)]\]

\[(\forall X)[\neg P(X) \rightarrow \Box \neg P(X)]\]

“because it follows from he nature of the property” -Gödel.
Technical Assumptions (Axiom 4)

$(\forall X)[P(X) \rightarrow \Box P(X)]$

$(\forall X)[\neg P(X) \rightarrow \Box \neg P(X)]$

"because it follows from he nature of the property" - Gödel.

Axiom 11.11: $(\forall X)[P(X) \rightarrow \Box P(X)].$
Being Godlike

Godlike is an intension term of type $\uparrow\langle 0 \rangle$, intuitively the set of god-like objects at a world.

Definition 11.12 G is the following type $\uparrow\langle 0 \rangle$ term:

$$\langle \lambda x. (\forall Y)[P(Y) \rightarrow Y(x)] \rangle$$

Definition 11.13 G^* is the following type $\uparrow\langle 0 \rangle$ term:

$$\langle \lambda x. (\forall Y)[P(Y) \leftrightarrow Y(x)] \rangle$$
Being Godlike

Godlike is an intension term of type $\uparrow\langle0\rangle$, intuitively the set of god-like objects at a world.

Definition 11.12 G is the following type $\uparrow\langle0\rangle$ term:

$$\langle \lambda x. (\forall Y)[P(Y) \rightarrow Y(x)] \rangle$$

Definition 11.13 G^* is the following type $\uparrow\langle0\rangle$ term:

$$\langle \lambda x. (\forall Y)[P(Y) \leftrightarrow Y(x)] \rangle$$

Proposition Assuming 11.3B, in K, $(\forall x)[G(x) \leftrightarrow G^*(x)]$.
Possibly God exists

Theorem 11.17 Assume axioms 11.3A, 11.5 and 11.10. In K both of the following are consequences: $\Diamond(\exists^E x)G(x)$ and $\Diamond(\exists x)G(x)$.
Objection 1

Theorem Assume all the axioms except for 11.10 and 11.9, the following are equivalent using $S5$:

1. Axiom 11.10:
 \[(\forall Z)[pos(Z) \rightarrow \forall X[(X \text{ intersection of } Z) \rightarrow P(X)]]\]
2. $P(G)$
3. $\Diamond (\exists^E x) G(x)$
Necessarily God exists

Formalizing Informal Definition 6 Let N abbreviate the following type $\uparrow\langle 0 \rangle$ term:

$$\langle \lambda x. (\forall Y) [E(Y, x) \rightarrow \Box (\exists^E z Y(z))] \rangle$$

something has property N of necessary existence provided any essence of it is necessarily instantiated.
Necessarily God exists

Formalizing Informal Definition 6 Let N abbreviate the following type $\uparrow\langle 0 \rangle$ term:

$$\langle \lambda x. (\forall Y)[E(Y,x) \rightarrow \Box (\exists zY(z))] \rangle$$

Something has property N of necessary existence provided any essence of it is necessarily instantiated.

Axiom 11.25: $\mathcal{P}(N)$.
Essence

The essence of something, \(x \), is a property that entails every property that \(x \) possesses: Intuitively,

\[
(\varphi \text{ Ess } x) \leftrightarrow \varphi(x) \land (\forall \psi)[\psi(x) \rightarrow \square \forall y[\varphi(y) \rightarrow \psi(y)]]
\]

Definition \(\mathcal{E} \) abbreviates the following \(\uparrow\langle\uparrow\langle 0 \rangle, 0 \rangle \), term (\(Z \) is type \(\uparrow\langle 0 \rangle \) and \(w \) is type 0):

\[
\langle \lambda Y, x. Y(x) \land \forall Z[Z(x) \rightarrow \square (\forall^E w)[Y(w) \rightarrow Z(w)]]\rangle
\]
Essence

The **essence** of something, \(x \), is a property that **entails** every property that \(x \) possesses: Intuitively,

\[
(\varphi \text{ Ess } x) \iff \varphi(x) \land (\forall \psi)[\psi(x) \rightarrow \Box \forall y[\varphi(y) \rightarrow \psi(y)]
\]

Definition \(\mathcal{E} \) abbreviates the following \(\uparrow\langle\uparrow\langle0\rangle, 0\rangle \), term (\(Z \) is type \(\uparrow\langle0\rangle \) and \(w \) is type 0):

\[
\langle \lambda Y, x. Y(x) \land \forall Z[Z(x) \rightarrow \Box (\forall^E w)[Y(w) \rightarrow Z(w)]] \rangle
\]

Theorem Assume axioms 11.3B and 11.11, in \(K \) the following is provable: \((\forall x)[G(x) \rightarrow \mathcal{E}(G, x)] \) (same for \(G^* \)).
Essence

The **essence** of something, x, is a property that *entails* every property that x possesses: Intuitively,

$$(\varphi \text{ Ess } x) \leftrightarrow \varphi(x) \land (\forall \psi)[\psi(x) \rightarrow \Box \forall y[\varphi(y) \rightarrow \psi(y)]]$$

Definition E abbreviates the following $\uparrow\langle\uparrow\langle 0 \rangle, 0 \rangle$, term ($Z$ is type $\uparrow\langle 0 \rangle$ and w is type 0):

$$\langle \lambda Y, x. Y(x) \land \forall Z[Z(x) \rightarrow \Box(\forall E w)[Y(w) \rightarrow Z(w)]] \rangle$$

Theorem Assume axioms 11.3B and 11.11, in K the following is provable: $(\forall x)[G(x) \rightarrow E(G, x)]$ (same for G^*).

Theorem In K, the following is provable

$$(\forall X)(\forall y)[E(X, y) \rightarrow \Box(\forall E z[X(z) \rightarrow (y = z)]]$$
Necessarily God exists

Theorem Assume Axioms 11.3B, 11.11, 11.25, in \(\mathbf{K} \)

\[(\exists x)G(x) \rightarrow \Box(\exists^E x)G(x)\]
Necessarily God exists

Theorem Assume Axioms 11.3B, 11.11, 11.25, in \mathbf{K}

$$(\exists x)G(x) \rightarrow \square(\exists^E x)G(x)$$

Theorem Assume axioms 11.3B, 11.11, 11.25, In the logic $\mathbf{S5}$,

$$\Diamond(\exists x)G(x) \rightarrow \square(\exists^E x)G(x)$$
Necessarily God exists

Theorem Assume Axioms 11.3B, 11.11, 11.25, in K

$$(\exists x)G(x) \rightarrow \Box(\exists^Ex)G(x)$$

Theorem Assume axioms 11.3B, 11.11, 11.25, In the logic $S5$,

$$\Diamond(\exists x)G(x) \rightarrow \Box(\exists^Ex)G(x)$$

Corollary $\Box(\exists^Ex)G(x)$
Conclusions

- Other objections: the modal system collapses ($Q \rightarrow \Box Q$ is valid)
- Fitting has a number of papers which develops and applies (fragments of) this framework (papers on Database Theory, logics “between” propositional and first order.
-